Возведение рациональных дробей к общему знаменателю

Общим знаменателем двух или нескольких рациональных дробей называется целое рациональное выражение, которое делится на знаменатель каждой дроби. Сводка начальных дробей к наименьшему общему знаменателю (далее будем называть его просто общим знаменателем) было достигнуто умножением числителя и знаменателя первой дроби на (2х + 1) , а числителя и знаменателя второй дроби - на [х - 1). Многочлены (2х + 1) и (. V-1) называют дополнительными множителями для первого и второго дробей соответственно. Таким образом, дополнительный множитель для данного дроби равен частному от деления общего знаменателя па знаменатель данного дроби.

Для того чтобы несколько рациональных дробей привести к общему знаменателю, необходимо:

1) разложить знаменатель каждой дроби на множители, если это возможно

2) создать общий знаменатель, включив в него как сомножители все разнообразные множители, полученные в пункте 1): если некоторое множитель с в нескольких разложения, то он берется с показателем степени, равным наибольшему из имеющихся;

3) определить дополнительные множители для каждого из дробей, разделив общий знаменатель на знаменатель каждой дроби;

4) умножить числитель и знаменатель каждой дроби на дополнительный множитель.