Хемосинтез и фотосинтез

Фотосинтез

Как вам уже известно, автотрофные организмы в зависимости от источника энергии разделяют на хемосинтезирующие и фотосинтезирующие. Хемосинтез. Хемосинтезирующие организмы (хемотрофи) для синтеза органических соединений используют энергию, которая высвобождается при преобразовании неорганических соединений. До этих организмов относятся некоторые группы бактерий: нитрификуючи, бесцветные сиркобактерии, железобактериями подобное.

Нитрификуючи бактерии последовательно окиснюють аммиак (NH3) до нитритов (соли HNO2), а затем - до нитратов (соли HN03). Железобактериями получают энергию за счет окисления соединений двухвалентного железа до трехвалентного. Они участвуют в образовании залежей железных руд. Бесцветные сиркобактерии окиснюють сероводород и другие соединения серы до серной кислоты (H2S04).

 

 

Процесс хемосинтеза открыл в 1887 году выдающийся русский микробиолог С. Н. Виноградский. Хемосинтезирующие микроорганизмы играют исключительную роль в процессах превращения химических элементов в биогеохимических циклах. Биогеохимические циклы (биогеохимический круговорот веществ) - это обмен веществами и обеспечения потока энергии между различными компонентами биосферы, вследствие жизнедеятельности различных организмов, имеет циклический характер.

Фотосинтез. Фототрофы используют для синтеза органических соединений энергию света. Процесс образования органических соединений из неорганических благодаря превращению световой энергии в энергию химических связей называют фотосинтезом. К фототрофных организмов относятся зеленые растения (высшие растения, водоросли), некоторые животные (растительные жгутиковые), а также некоторые прокариоты - цианобактерии, пурпурные и зеленые сиркобактерии.

Исследовать процесс фотосинтеза начали еще во второй половине XVIII столетия. Ряд важных открытий в этом вопросе сделано во второй половине XIX века. Например, российский физиолог растений А.С. Фаминцын установил, что фотосинтез может происходить не только под воздействием солнечного света, но и при искусственном освещении. Важное открытие сделал выдающийся русский ученый К.А.Тимиря-зев, который теоретически обосновал и экспериментально доказал роль хлорофилла в поглощении света в процессе фотосинтеза. Он также обосновал положение о космической роли зеленых растений, которые, улавливая солнечные лучи и превращая световую энергию в энергию химических связей синтезируемых ими органических соединений, обеспечивающих сохранение и развитие жизни на Земле.

Кислород, который выделяют фотосинтетики, изменил состав атмосферы Земли. Из него постепенно сформировался озоновый экран, способный задерживать ультрафиолетовые солнечные лучи, губительно действующие на живые организмы суши. Таким образом, зеленые растения являются «посредниками» между космосом и всеми живыми существами на Земле.

В клетках высших растений фотосинтез происходит в специальных органеллах-хлоропластах.

Основными из фотосинтезирующих пигментов являются хлорофиллы. По своей структуре они напоминают гемм гемоглобина, но в этих соединениях вместо железа присутствует магний. Железо нужно растительным организмам для обеспечения синтеза молекул хлорофилла (если в растение железо не поступает, то у нее образуются бесцветные листья, способные к фотосинтезу). Большинство фотосинтезирующих организмов имеет разные хлорофиллы: хлорофилл а (обязательный), хлорофилл b (у зеленых растений), хлорофилл с (у диатомовых и бурых водорослей), хлорофилл d (у красных водорослей). Зеленые и пурпурные бактерии содержат особые бактериохлорофилл.

В основе фотосинтеза лежит окислительно-восстановительный процесс, связанный с переносом электронов от соединений поставщиков электронов (доноров) к соединениям, которые их воспринимают (акцепторов), с образованием углеводов и выделением в атмосферу молекулярного кислорода. Световая энергия превращается в энергию синтезированных органических соединений (углеводов) в особых структурах - реакционных центрах, содержащих хлорофилл а.

В процессе фотосинтеза в зеленых растений и цианобактерий участвуют две фотосистемы - первая (И) и вторая (II), имеющих различные реакционные центры и связанные между собой через систему переноса электронов.

Процесс фотосинтеза происходит в две фазы - световую и темно-ву. В световую фазу, реакции которой перебегают в мембранах особых структур хлоропластов - тилакоидов при наличии света (рис.36), фотосинтезирующие пигменты улавливают кванты света (фотоны). Поглощение фотонов приводит к «возбуждение» одного из электронов молекулы хлорофилла, который с помощью молекул - переносчиков электронов перемещается на внешнюю поверхность мембраны тилакоидов, приобретая определенной потенциальной энергии.

В фотосистеме / этот электрон может возвращаться на свой энергетический уровень и восстанавливать ее, а может передаваться следующей соединении, как НАДФ. Электроны, взаимодействуя с ионами водорода, которые есть в окружающей среде, восстанавливают это соединение:

Напомним, что когда определенное соединение отдает электрон - она окисляется, а когда присоединяет - возобновляется. Восстановленный НАДФ (НАДФ • Н2) впоследствии поставляет водород, необходимый для восстановления атмосферного CO2 к глюкозе (то есть соединения, в котором запасается энергия).

Подобные процессы происходят и в фотосистеме II. Возбужденные электроны, возвращаясь на свой энергетический уровень, могут передаваться фотосистеме И и таким образом ее восстанавливать. Фотосисте-ма II восстанавливается за счет электронов, которые поставляют молекулы воды. Под действием света при участии ферментов молекулы воды расщепляются (фотолиз воды) на протоны водорода и молекулярный кислород, который выделяется в атмосферу, а электроны используются на видновленняьфотосистемы.

Энергия, высвобожденная при возвращении электронов по внешней поверхности мембраны тилакоидов на предыдущий энергетический уровень, запасается в виде химических связей молекул АТФ, которые синтезируются при реакций в обоих фотосистема. Некоторая ее часть расходуется на испарение воды. Таким образом, при световой фазы фотосинтеза образуются богатые энергию (которая запасается в виде химических связей) соединения: синтезируется АТФ и возобновляется НАДФ. Как продукт фотолиза воды в атмосферу выделяется молекулярный кислород.

Реакции темповой фазы фотосинтеза протекают во внутренней среде (матриксе) хлоропластов как на свету, так и в другом случае. Как упоминалось ранее, в ходе реакций темновой фазы С02 восстанавливается до глюкозы благодаря энергии высвобождается при расщеплении АТФ, и за счет восстановленного НАДФ.

Соединением, воспринимает атмосферный С02, является рибульозобифос-Фат (пятиуглеродный сахар, соединенный с двумя остатками фосфорной кислоты). Процесс присоединения С02 катализирует фермент кар-боксилаза. В результате сложных и многоступенчатых химических реакций, каждую из которых катализирует свой специфический фермент, образуется конечный продукт фотосинтеза - глюкоза, а также восстанавливается акцептор С02 - рибульозобифосфат. С глюкозы в клетках растений могут синтезироваться полисахариды - крахмал, целлюлоза и т.п..

Итоговое уравнение процесса фотосинтеза в зеленых растений выглядит так:

В фотосинтезирующих прокариот есть определенные различия в течении световой и тем-новой фаз фотосинтеза. В прокариот отсутствуют пластиды, потому фотосинтезирующие пигменты расположены на внутренних выростах цитоплазматической мембраны, где и происходят реакции световой фазы. В зеленых и пурпурных бактерий, в отличие от цианобактерий, нет фотосистемы II, поставщиком электронов является не вода, а сероводород, молекулярный водород и некоторые другие соединения. Вследствие этого в этих групп бактерий в ходе фотосинтеза кислород не выделяется.

Значение фотосинтеза для биосферы трудно переоценить. Именно благодаря этому процессу улавливается световая энергия Солнца. Фотосинтезирующие организмы превращают ее в энергию химических связей синтезированных углеводов, а затем по цепям питания она передается гетеротрофным организмам. Следовательно, не будет преувеличением считать, что именно благодаря фотосинтезу возможно существование биосферы. Зеленые растения и цианобактерии, поглощая углекислый газ и выделяя кислород, влияют на газовый состав атмосферы. Весь атмосферный кислород имеет фотосинтетическое происхождения. Ежегодно благодаря фотосинтеза на Земле синтезируется около 150 млрд тонн органического вещества и выделяется свыше 200 млрд тонн свободного кислорода, который не только обеспечивает дыхание организмов, но и защищает все живое на Земле от губительного влияния коротковолновых ультрафиолетовых космических лучей (озоновый экран атмосферы).

Но в целом процесс фотосинтеза малоэффективен. В синтезированную органическое вещество переводится лишь 1-2% солнечной энергии. Это объясняется неполным поглощением света растениями, а также тем, что часть солнечного света отражается от поверхности Земли обратно в космос, поглощается атмосферой подобное. Производительность процесса фотосинтеза возрастает в условиях лучшего водоснабжения растений, их оптимального освещения, обеспечения углекислым газом, благодаря селекции сортов, направленной на повышение эффективности фотосинтеза подобное. Одной из самых культурных растений считают кукурузу, в которой достаточно высокий КПД фотосинтеза.

выводы

Автотрофы способны синтезировать органические соединения из неорганических, используя для этого или энергию, которая высвобождается в результате химических реакций (хемотрофных организмы), или энергию света (фототрофные организмы).

Хемотрофных организмы - исключительно прокариоты (нитрификуючи бактерии, железобактериями, сиркобактерии т.д.). Среди фототрофных организмов известны как прокариоты, так и эукариоты.

Фотосинтез - процесс преобразования световой энергии в энергию химических связей органических соединений, синтезируемых автотрофными организмами. Он имеет две фазы: световую и темновую. Световая фаза у растений осуществляется в особых образованиях хлоропластов-тилакоидов, где содержится пигмент хлорофилл.

Темновая фаза фотосинтеза происходит в строме хлоропластов.

Фотосинтез имеет исключительное значение для существования биосферы (атмосферный кислород преимущественно фотосинтетического происхождения).

 


Загрузка...
Яндекс.Метрика Google+