Считается, что все организмы и все составляющие клетки произошли эволюционным путем от общей предковой клетки. Если через нагретую смесь воды и газов, таких как СО2, СН4, NH3 и H2, пропускать электрический разряд, они реагируют с образованием малих органических молекул, среди которых четыре основных типа биомолекул - аминокислоты, нуклеотиды, углеводы и жирные кислоты. Условия, существовавшие на Земле в первуй млрд. лет ее истории, являются предметом спора. 

С точки зрения наиболее современной теории - глобальной тектоники плит, или неомобилизма - происхождение первых органических молекул связано с активностью рифтовых зон - трещин, через которые недра земной коры и поверхность планеты сообщаются друг с другом. Такие рифтовые зоны являются местом постоянной вулканической активности и предполагают, что через них происходила дегазация мантийного вещества Земли (выделение паров воды, СО2, СН4, NH3 и H2), тогда как в первичной атмосфере планеты водорода и метана было ничтожно мало, а аммиака не было вообще. Частички вулканического пепла во время извержения постоянко трутся друг о друга, происходит их сильная электризация и отсюда частые вспышки разрядов. Осевший пепел служил защитой от жесткого ультрафиолетового излучения (озоновый слой тогда еще отсутствовал), и под ним могла накапливаться первичная органика. Пеплы в изобилии содержат активные катализаторы: свободные хром, железо, кобальт, никель, свинец, платину. Очень пористый роголит первозданного грунта поглощал значительную часть конденсирующейся из пара воды. Мелкие поры рогалита придают ему свойства губки, в которой создавалась высокая концентрация аминокислот, нуклеотидов, жироподобных веществ и других молекул нарождающейся жизни. Таким образом, рифтовые зоны, покрывавшие всю поверхность Земли, могли служить постоянно действующими реакторами по производству первичной органики.

Простые органические молекулы, такие как аминокислоты, или нуклеотиды, когут ассоциировать с образованием больших полимеров. Если полимер образовался, он способен влиять на синтез других полимеров. В особенности это относится к полинуклеотидам, которые способны служить матрицей в реакции полимеризации и, таким образом, направлять свой собственный синтез. Специфическое спаривание комп- лементарных нуклеотидов сыграло, видимо, решающую роль в возникновении жизни.

Поскольку и время для синтеза, и химически активные предшественники нуклеотидов имелись в изобилии, вполне возможно, что в пребиотических условиях на Земле возникли медленно реплицирующиеся системы полинуклеотидов. При благоприятных условиях полинуклеотид может размножаться, поскольку каждая исходная молекула используется в качестве матрицы для образования дочерних копий. Однако в процессе копирования, особенно в первобытных условиях, неизбежно происходит много ошибок. Начнут размножаться новые и неточные копии оригинала, так что последовательность нуклеотидов будет изменяться. Поскольку трехмерная укладка полинуклеотида влияет на его стабильность и на способность реплицироваться, то все молекулы в репликативной цепи будут размножаться с разным успехом. Некоторые будут слишком длинны или слишком плотно свернутыми, чтобы служить хорошими матрицами. Другие, напротив, будут нестабильными. Действительно, в лабораторных опытах было показано, что система реплицирующихся молекул подвержена естественному отбору, и что в конце концов в зависимости от конкретных условий начнет преобладать та или иная наиболее конкурентноспособная последовательность нуклеотидов.

Возможно, что 3.5 - 4 млрд. лет назад самореплицирующиеся системы полинуклеотидов (вероятно, РНК) положили начало эволюционному процессу. Хотя структура полинуклеотидов хорошо приспособлена для хранения и репликации информации, эти молекулы недостаточно разнообразны для обеспечения всех структурных и функциональных потребностей клетки. Напротив, белки состоят из многих различных аминокислот, и разнообразие их пространственной структуры делает их весьма подходящими для выполнения широкого круга структурных и функциональных задач.

Некоторые случайно возникшие полипептиды могли облегчать репликацию молекул РНК как катализаторы. Для реплицирующихся систем особенно полезными должны были оказаться те из них, которые могли быть воспроизведены на молекулах РНК как на матрицах за счет пространственных соответствий и слабых нековалентных взаимодействий между нуклеотидами и аминокислотами (подобные соответствия действительно существуют). Таким образом, мог возникнуть прототип генетического кода. Получившиеся автокаталитические системы (рис. 169) должны были приобрести большое преимущество в эволюционной борьбе за существование.

Белки, синтезируемые под контролем определенного типа РНК, не могли бы облегчить репликацию именно этих молекул РНК, если бы не удерживались поблизости от них. Как было рассказано в лекции, посвященной мембранам, фосфолипиды в водном растворе самопроизвольно могут образовывать структуры типа липосомы.

Считается, что первая клетка образовалась, когда такая случайно возникшая липосома заключила в себе самореплицирующуюся смесь молекул РНК и белка. Это обеспечило преимущественное использование этих белков только для внутренних нужд (рис. 170). Признаком, по которому теперь начался отбор, стала не только собственная структура РНК, но и свойства кодируемых ей белков. Таким образом, нуклеотидная последовательность молекул РНК стала проявляться в свойствах клетки как целого. На какой-то более поздней стадии эволюционного процесса ДНК, как более устойчивая и болем подходящая для хранения генетической информации, заменила РНК для выполнения этой функции.


Загрузка...
Яндекс.Метрика Google+