Процесс фотосинтеза, осуществляемый хлоропластами растительной клетки, происходит по тому же хемиосмотическому механизму, который осуществляется в митохондриях, и в основе организации тех и других органелл лежат одни и те же принципы. Однако источник энергии, которая запасается в виде АТФ, различен: в процессе дыхания - это энергия химических связей органических веществ, а в процессе фотосинтеза - энергия света.

Фотосинтез осуществляется в три стадии. На первой стадии происходит поглощение кванта света, осуществляемое молекулами хлорофилла. Известно несколько различных форм хлорофилла. Основными хлорофиллами высших растений являются хлорофиллы а и b (рис. 100), у различных водорослей встречаются также хлорофиллы c, d и e. 4 пиррольных кольца образуют в молекуле цикл из чередующихся двойных и одинарных связей (рис. 100), в центре которого находится атом магния. Эта часть молекулы является хромофором, хорошо поглощающим свет в синей и красной областях спектра (рис. 101). Длинный гидро- фобный "хвост", присоединенный сложноэфирной связью к тетрапиррольному кольцу, является остатком спирта фитола и служит для прикрепления к белкам тилакоидной мембраны хлоропластов. Очень близки по строению к хлорофиллам растений фотосинтетические пигменты бактерий, называемые бактериохлорофиллами. Для болем полного улавливания света хлорофиллы собраны в группы по нескольку сотен молекул - так называемые антенные комплексы. Помимо хлорофилла, каждый антенный комплекс содержит дополнительные пигменты - каротиноиды (рис. 102). Тогда как хлорофиллы слабо поглощают свет в области спектра от 500 до 600 нм, каротиноиды інтенсивно поглощают свет в желто-зеленой области и способны передавать энергию поглощенных фотонов молекулам хлорофилла. Таким образом, каротиноиды служат дополнительными фотосинтетическими пигментами. Еще одной функцией каротиноидов является защита молекул хлорофилла от окисления активными формами кислорода.

После поглощения фотона молекула хлорофилла переходит в одно из возбужденных состояний (рис. 103). В возбужденном состоянии молекула находится только короткое время, после чего происходит один из трех процессов. Во-первых, молекула может вернуться в невозбужденное состояние с выделением энергии в виде тепла (тепловая диссипация возбуждения). Во-вторых, молекула может перейти в невозбужденное состояние, "сбросив" избыточную энергию в виде высвечивания фотона. Этот процесс называется флуоресценция, если высвечивание происходит из короткоживущего синглетного состояния, и фосфорисценция, если из долгоживущего триплетного состояния.

Третий и наиболее важный процесс перехода молекулы хлорофилла в исходное невозбужденное состояние заключается в передаче энергии возбуждения соседней (находящейся на расстоянии 1 - 2 нм) молекуле хлорофилла по индуктивно-резонансному механизму. У этой получившей возбуждение молекулы хлорофилла тоже есть те же три возможности вернуться в невозбужденное состояние. Таким образом, энергия возбуждения, если не диссипирует в тепло и не высвечивается в виде фотона, мигрирует в антенном комплексе от молекулы к молекуле, пока не попадет на молекулу хлорофилла реакционного центра (рис. 104). При этом молекулы антенного комплекса слегка отличаются по своїм энергетическим уровням и расположены таким образом, что энергия возбуждения не блуждает случайным образом, а направляется прямо к реакционному центру. В результате антенный комплекс служит как бы "воронкой", собирающей световую энергию и направляющей ее к единому центру.

Молекула хлорофилла реакционного центра тоже может высветить или диссипировать энергию своего возбуждения, но отличается от других молекул хлорофилла тем, что может передать не энергию возбуждения электронных орбиталей, а сам высокоэнергетический электрон, т.е. вступить в окислительно-восстановительную реакцию, что эта молекула и делает с высокой степенью вероятности.

Конкретное место действия уже описанных и последующих процессов показано на рис. 105. Хлорофиллы реакционных центров, способные отдавать электрон, расположены на двух разных больших пигмент-белковых комплексах, называемых фотосистема I (ФС I) и фотосистема II (ФС II). Хлорофилл реакционного центра ФС I обозначается Р680 (по длине волны главного максимума поглощения), расположен на большом полипептиде (47 кДа) и отдает свой электрон (е-) молекуле феофитина, расположенной рядом на том же полипептиде: Хл* + Фео 6 Хл+ + Фео-, где * означает возбужденное состояние. После этого в молекуле хлорофилла остается положительно заряженная "дырка", которую необходимо заполнить электроном. Электрон берется из молекулы воды, но поскольку "оторвать" электрон из устойчивой молекулы Н2О довольно тяжело, это делает специальный водорасщепляющий комплекс, состоящий из нескольких полипептидов (33, 18 и 24 кДа), содержащий катализирующие этот процесс атомы Mn и Cl и присоединяющийся к комплексу ФС II со стороны просвета (люмена) тилакоида (рис. 105). Всего от молекул воды в 4 этапа отрывается 4 электрона, после чего выделяется молекула кислорода: 2Н2О 6 О2 + 4Н+ + 4е-. Этот кислород является побочным продуктом фотосинтеза; он далее не используется в хлоропласте, а диффундирует из хлоропластов в цитоплазму, из цитоплазмы в межклеточное пространство листа и через устьица выходит в атмосферу.

Электрон, полученный феофитином, передается далее по электрон-транспортной цепи, аналогичной дыхательной цепи митохондрий. Сначала происходит последовательность окислительно-восстановительных реакций между молекулами, связанными с полипептидами ФС II, затем электроны поступают в пул растворимых в липидном бислое подвижных переносчиков пластохинонов, очень похожих на молекулы кофермента Q электрон-транспортной цепи митохондрий. Пластохиноны переносять электроны на цитохромный комплекс, или пластохинол-пластоцианин-оксидоредуктазу, а с цитохромного комплекса электроны поступают на маленький (10.5 кДа) растворимый белок пластоцианин (ПЦ), локализованный в люмене тилакоидов (рис. 105). Еще одним реакционным центром в хлоропластах служит хлорофилл Р700, находящийся в комплексе ФС I. Возбуждаясь под действием энергии, переносимой к нему от антенного комплекса, Р700 отдает свой электрон следующему участнику электрон-транспортной цепи (Ао) и восполняет потерю электрона от пластоцианина, восстановленного цитохромным комплексом. После серии окислительно-восстановительных реакций в пределах комплекса ФС I электроны попадают на еще один небольшой (11 кДа) растворимый белок-переносчик - ферредоксин, локализованный в строме хлоропластов. И, наконец, окончательным звеном фотосинтетической электрон-транспортной цепи является ассоциированный с мембраной фермент ферредоксин:НАДФ-оксидоредуктаза, принимающий электроны от восстановленного ферредоксина и восстанавливающий НАДФ+ до НАДФН. Последовательность окислительно-восстановительных реакций, осуществляемых фотосистемами и цитохромным комплексом, показана на рис. 106.

Процесс переноса электронов через цитохромный комплекс сопряжен с переносом протонов из стромы хлоропласта внутрь люмена тилакоида. Кроме того, протоны образуются в люмене тилакоида при расщеплении воды водорасщепляющим комплексом ФС II. Таким образом, так же, как и в дыхательной цепи перенос электрона вдоль тилакоидной мембраны вызывает образование на ней разности электрохимических по- тенциалов ионов Н+. И так же, как в митохондриях, тилакоидная мембрана "разряжается" через хлоропластную АТФ-синтетазу, устроенную почти точно так же как и митохондриальная (рис. 105). Однако особенностью тилакоидных мембран является выход ионов Mg2+ в строму в ответ на закачку протонов в тилакоиды. Поэтому разность электрохимических потенциалов на мембране почти целиком обуславливается градиентом pН, составляющим 3 - 3.5 единицы, а не разницей зарядов. Еще одна особенность фотосинтетической электрон-транспортной цепи - это возможность зацикливания переноса электронов. Восстановленный ферредоксин, перемещаясь вдоль стромальной поверхности тилакоидной мембраны, может отдавать электроны не только ферредоксин:НАДФ-окси- доредуктазе, но и цитохромному комплексу. В результате образования НАДФН не происходит, но накачка протонов внутрь тилакоида, осуществляемая цитохромным комплексом, идет, и АТФ синтезируется. Регуляция соотношения путей линейного переноса е- от воды к НАДФ+ и циклического переноса е- вокруг ФС I служит одним из способов адаптации функционирования фотосинтетического аппарата хлоропластов в разных условиях.

Последовательное соединение двух фотосистем в переносе электрона вдоль мембраны позволяет создать больший перепад окислительно-восстановительных потенциалов на концах электрон-транспортной цепи (от +0.82 В до -0.32 В) (рис. 107). Схема путей переноса электрона на энергетической диаграмме похожа на зигзаг и поэтому называется Z- схемой (от англ. zigzag). Так же, как и митохондриальные мембранные комплексы, белковые комплексы фотосинтетической электрон-транспортной цепи способны перемещаться вдоль тилакоидной мембраны. В нормальных условиях они обачно присутствуют почти в эквимолярных количествах, однако наблюдается неоднородность в пространственном распределении фотосистем: ФС II расположена в области гран (в зонестэкинга соседних тилакоидов граны), тогда как ФС I локализована в тилакоидах стромы. Там же находятся комплексы АТФ-синтетазы с экспонированными в строму F1. Каждая из фотосистем имеет собственный антенный комплекс, собирающий световую энергию и направляющий ее на хлорофилл реакционного центра. Кроме того, есть еще один отдельный светособирающий пигмент-белковый комплекс (непоказанный на рис. 105).

Обычно этот светособирающий комплекс локализован в гранах, где принимает участие в стэкинге тилакоидов и передает энергию на ФС II. Но в условиях избыточного возбуждения ФС II, когда начинает накапливаться большой пул восстановленных пластохинонов, этот комплекс фосфорилируется специальным ферментом-киназой и приобретает дополнительный отрицательный заряд из-за фосфатных групп. Электростатические силы выталкивают светособирающий комплекс из гранальных областей тилакоидной мембраны в тилакоиды стромы, где он начинает взаимодействовать с комплексами ФС I, передавая энергию их реакционным центрам и стимулируя циклический транспорт электронов вокруг ФС I. При отщеплении фосфатных групп другим специфическим ферментом-фосфорилазой светособирающий комплекс возвращается в гранальные области тилакоидов к ФС II. Таким образом, регулируется перераспределение энергии между двумя фотосистемами.

Однако образованием АТФ и восстановлением НАДФ+ процесс фотосинтеза не заканчивается. АТФ и НАДФН используются далее в циклической последовательности ферментативных реакций, осуществляющихся в строме хлоропласта и называемых циклом Кальвина (Melvin Calvin, Нобелевская премия 1961 г.), или циклом Бенсона-Кальвина, или восстановительным пентозофосфатным циклом (ВПФ-цикл). Цикл начинается присоединением молекулы СО2 к пятиуглеродному моносахариду рибулозо-1,5- бисфосфату (реакция карбоксилирования) и включает еще 12 ферментативных реакцій (рис. 108).


Загрузка...
Яндекс.Метрика Google+