Гликолиз почти универсален как один из центральных путей катаболизма углеводов: он есть не только во всех растительных и животных клетках, но и у микроорганизмов. Расщепление в процессе гликолиза шестиуглеродной молекулы глюкозы на две трехуглеродные молекулы осуществляется десятью последовательными ферментативными реакциями. Гликолиз проходит в два этапа (рис. 94): первые 5 реакций составляют подготовительный этап гликолиза, в ходе которого глюкоза активируется для последующего расщепления при помощи фосфорилирования; на втором этапе гликолиза, также состоящем из 5 реакций, химическая энергия запасается в результате сопряженного синтеза 4 молекул АТФ. Общий выход АТФ в процессе гликолиза равен, однако, не 4, а только двум молекулам АТФ в расчете на одну расщепленную молекулу глюкозы, поскольку 2 молекулы АТФ были уже израсходованы на подготовительном этапе гликолиза. Конечным продуктом гликолиза является молочная кислота, или лактат (C3H5O3-), а суммарное уравнение можно записать в следующем виде:
C6H12O6 + 2АДФ3- + 2НPO4
2- 6 2C3H5O3
- + 2АТФ4- + 2Н2О.
Весь процесс гликолиза осуществляется в цитоплазме: все 10 ферментов гликолиза присутствуют в растворимой форме в цитозоле. Они были выделены в чистом виде из разных видов организмов и тщательно изучены. Помимо глюкозы, на разных стадіях подготовительного этапа в гликолиз могут вовлекаться и другие моносахариды.

При гликолизе высвобождается только небольшая часть той энергии, которая могла бы быть извлечена при химическом расщеплении молекулы глюкозы. Однако у гликолиза есть важное достоинство: ни одна из его реакций не использует в качестве окислителя молекулярный кислород. Поэтому гликолиз используется, например, при интенсивной работе мышц, когда циркуляция крови не успевает доставлять в мышцы кислород, необходимый для более полного расщепления глюкозы. В этих условиях клетки мышечной ткани получают необходимый для их сокращения АТФ в процессе гликолиза, и, следовательно, в них накапливается лактат. С накоплением лактата связано мышечное утомление.

Этот лактат диффундирует из мышечной ткани в кровь и в период восстановле- ния медленно превращается в печени обратно в глюкозу. Вообще говоря, у мелких животных кислород доставляется циркуляторными системами достаточно быстро, тогда как крупные животные должны прибегать к гликолизу во время усиленной мышечной активности и затем им требуется долгий период восстановления для нейтрализации лактата и восполнения запасов АТФ и гликогена. У динозавров и других гигантских доисторических животных источником энергии для работы мышц служил, вероятно, гликолиз, и, значит, им тоже были необходимы длительные периоды восстановления сил, во время которых эти животные легко становились добычей более мелких хищников, способных лучше использовать кислород, а потому и лучше приспособленных к длительной мышечной активности. Существование обитателей больших глубин тоже возможно лишь благодаря гликолизу, поскольку содержание кислорода там близко к нулю.

Задача 33. Запас АТФ в мышечной ткани. Концентрация АТФ в мышечной ткани (в которой около 70% приходится на долю воды) равна приблизительно 8.0 мМ. В периоды усиленной мышечной активности АТФ расходуется для мышечного сокращения со скоростью 300 мкмоль/мин на 1 г мышечной ткани. На какое время хватит этого запаса АТФ спринтеру, бегущему 100-метровую дистанцию? Концентрация креатинфосфата в мышечной ткани составляет примерно 40.0 мМ. На какое время позволит креатин фосфат растянуть запас мышечного АТФ?


Загрузка...
Яндекс.Метрика Google+