Наличие рибосом на мембранах гранулярного ЭПР однозначно показывает, что это место синтеза белков. Однако в большинстве случаев на рибосомах гранулярного ЭПР синтезируются белки, не участвующие ни в каких процессах внутри данной клетки, "ненужные" ей, а иногда даже вредные для клетки. Например, на рибосомах гранулярного ЭПР клеток молочной железы в большом количестве синтезируется казеин молока, который совсем не нужен клеткам молочной железы, а на рибосомах гранулярного ЭПР клеток пищеварительных желез синтезируются расщепляющие макромолекулы ферменты, попадание которых в цитозоль неминуемо должно привести к самоперевариванию клетки и ее гибели.

Однако этого не происходит, потому что синтезируемые белки переносятся через мембрану ЭПР в его полость и тем самым сразу же изолируются от цитозоля и цитоплазматических структур. Таким образом, роль гранулярного ЭПР заключается не просто в синтезе белков на рибосомах его мембран, но и в изоляции этих белков от остальных функционирующих белков клетки. Белки, синтезируемые на рибосомах мембран ЭПР, проходят через мембрану ЭПР еще в процессе своего синтеза, т.е. одновременно с трансляцией - ко-трансляционно (рис. 76).

Рибосомы, связанные с мембраной ЭПР, ничем не отличаются от свободных цитоплазматических рибосом. Синтез выводимых (секреторных) белков начинается еще в цитоплазме, но растущая полипептидная цепь такого белка является особой лидерной последовательностью, или сигнальным пептидом, потому что служит "сигналом", направляющим рибосому к гранулярным областям ЭПР, так же, как другие сигнальне последовательности направляют хлоропластные и митохондриальные белки в соответствующие органеллы. Специальный белок, содержащийся в цитозоле, узнает этот сигнал, связывается с рибосомой и останавливает трансляцию до тех пор, пока эта рибосома не подойдет к мембране гранулярного ЭПР и сигнальный пептид не свяжется со специальным мембранным белком-рецептором. После того как рибосома дополнительно закрепится на мембране с помощью рибофоринов, трансляция продолжается, но растущий белок теперь "проталкивается" через мембрану. После окончания трансляции сигнальный пептид секреторного белка отрезается специальным ферментом лидер-пептидазой и белок уже не может покинуть полость ЭПР. Таким образом осуществляется направленное выведение (vectorial discharge) белков. Однако на рибосомах гранулярного ЭПР синтезируются не только выводимые, секреторные белки, но и мембранные белки и белки цитозоля (рис. 77). Например, клетки человека линии HeLa в культуре ткани синтезируют всего лишь 2% белка от общего их содержания, тогда как с мембраной ЭПР связано 15% всех рибосом.

Большинство белков, синтезированных на мембранах гранулярного ЭПР, представляют собой гликопротеины, тогда как растворимые белки цитозоля не гликозилированы. Гликозилирование - это еще одна из основных биосинтетических функций ЭПР. Это гликозилирование оказывает влияние на дальнейшую судьбу белков. Чаще всего к белкам, находя- щимся в полости гранулярного ЭПР, присоединяется олигосахарид толь- ко одного типа (состоящий из N-ацетилглюкозамина, маннозы и глюкозы), который присоединяется к аминогруппе боковой цепи остатка ас- парагина. Присоединение олигосахарида осуществляется специальным мембранно-связанным ферментом при участии активированного фосфорилированием липида долихола (рис. 78).

Гликопротеины, переносимые из гранулярного ЭПР в другие места, "упаковываются" в мелкие транспортные пузырьки, которые отщепляются от промежуточной части ЭПР (рис. 79). Стенка этих пузырьков состоит из липидов и белков мембраны ЭПР, а сами пузырьки содержат растворимые гликопротеины, захваченные из полости ЭПР. Большинство из этих пузырьков сливается, образуя плоские цистерны на ближней к ядру стороне аппарата Гольджи так называемой формирующейся, или цис-стороной.

В аппарате Гольджи происходит дальнейшее "созревание" гликозилированных белков, синтезированных в гранулярном ЭПР и перешедших таким образом в аппарат Гольджи. "Созревание" белков включает различные ковалентные модификации, в результате которых белки приобретают свою функционально-активную структуру. Кроме того, очень сильно модифицируются связанные с остатком аспарагина олигосахариды, присоединившиеся ранее к белкам в ЭПР: некоторые остатки сахаров избирательно отщепляются, а некоторые новые добавляются. Процессинг олигосахаридов осуществляется с помощью нескольких различных чрезвычайно сложных и точно "запрограммированных" ферментних механизмов. Выбор "программы" модификации определяется каким-то пока неизвестным свойством каждой индивидуальной полипептидной цепи. Ферменты, осуществляющие модификацию белков, как и сами модифицирующиеся белки, тоже, вероятно, попадают в аппарат Гольджи из ЭПР. Предполагают, что после процессинга присоединенный к белку олигосахарид становится "адресом", по которому должен быть доставлен данный белок. "Созревшие" белки снова "упаковываются" в транспортные пузырьки, но уже на зрелой, или транс-стороне. Каким образом белки перемещаются через аппарат Гольджи из цистерны в цистерну вдоль каждой стопки, неизвестно.

Большинство транспортных пузырьков представляют особый класс внутриклеточных пузырьков, которые на микрофотографиях выглядят окруженными со стороны цитоплазмы щетинообразной каймой и потому называются окаймленными пузырьками. Диаметр окаймленных пузырьков варьирует от 50 до 250 нм. В их мембране количественно преобладает консервативный фибриллярный белок клатрин (180 кДа), который вместе с меньшим полипептидом (35 кДа) образует характерный многогранный чехол на поверхности окаймленных пузырьков. Основным структурным элементом чехла служит белковый комплекс трискелион, состоящий из трех полипептидных цепей клатрина и трех 35 кДа-полипептидов. Трискелионы образу ют на поверхности окаймленных пузырьков корзиноподобные сетки из шестиугольников и пятиугольников (рис. 80). Выделенные трискелионы при соответствующих условиях способны к спонтанной агрегации. При этом даже в отсутствие пузырьков формируются типичные многогранные корзинки. Трискелионы связаны со множеством вспомогательных белков. Эти белки, во-первых, в процессе формирования пузырька "вылавливают" из цистерн аппарата Гольджи белки с одинаковыми олигосахаридными "адресами", и, во-вторых, узнают компоненты мембраны, с которой должен слиться данный пузырек.

Известно, что содержимое каждого транспортного пузырька доставляется точно по правильному "адресу" к определенной внутриклеточной мембране, поэтому должны существовать различные субпопуляции транспортных пузырьков, имеющих на своїй поверхности уникальные вспомогательные белки, так называемые маркеры стиковки (docking markers), которые опознаются комплементарными акцепторами на мембранах мишеней. Одна из возможных моделей, описывающая этот процесс, представлена на рис. 81. Таким образом, окаймленные пузырьки можно рассматривать как миниатюрные сортировочные машины.

Транспортные пузырьки, сливающиеся с плазматической мембраной и высвобождающие свое содержимое в межклеточное пространство, называются секреторными, или экзоцитозными пузырьками. Наряду с окаймленными пузырьками в клетке образуются и окаймленные ямки, т.е. эндоцитозные пузырьки, отпочковывающиеся внутрь клетки от окаймленных участков плазматической мембраны. Когда клетке нужно "выловить" из межклеточной жидкости какое-либо вещество, она, как правило, использует механизм опосредуемого рецепторами эндоцитоза, или адсорбционный эндоцитоз, при котором клетка производит белки-рецепторы для этого вещества, которые встраиваются в состав окаймленных участков плазматической мембраны. Все молекулы, связавшиеся с рецепторами, быстро проникают внутрь клетки, поскольку окаймленные ямки постоянко отщепляются, образуя окаймленные пузырьки. Эти пузырьки быстро теряют свою кайму и сливаются с другими пузырьками, образуя более крупные пузырьки, называемые эндосомами. Содержимое эндосом может использоваться клеткой. Хорошо изученный пример использования адсорбционного эндоцитоза - это поглощение животными клетками холестерола из внеклеточной среды.


Загрузка...
Яндекс.Метрика Google+