В предыдущем разделе было рассказано про ограничения по длине волны, используемой в световых микроскопах. Продвинуться дальше в область более коротких волн удалось, используя волновые свойства вещества: l=h/mv, где l - длина волны, соответствующая частице с массой m, движущейся со скоростью v, а h - постоянная Планка.

В качестве излучения оказалось возможным использовать электроны: они обладают маленькой массой покоя, заряжены и за счет этого могут быть разогнаны до очень больших скоростей, поэтому соответствующая им длина волны очень мала. Кинетическая энергия электрона mv2/2=eV, где e - заряд электрона, а V - ускоряющее напряжение, то l=1.23/V-0.5 (нм), и, следовательно, электронам с энергией 40 кэВ - 3 МэВ (1 эВ ~ 1.6710-19 Дж) соответствуют l = 0.006 - 0.001 нм. Кроме того, движение электронов легко контролировать наложением электрических и магнитных полей, что позволяет создать "линзы" для фокусировки пучков электронов. Однако на практике невозможность точного регулирования ускоряющего напряжения и корректировки аббераций в электронном пучке ограничивает возможности электронных микроскопов предельным разрешением в 0.2 нм.

В просвечивающем (трансмиссионном) электронном микроскопе часть электронов, которые проходят через образец, рассеиваются (в зависимости от плотности вещества в данном месте), а остальные фокусируются и формируют изображение на фотопластинке или фосфоресцирующем экране. Источником электронов служит нить катода, расположенная на вершине цилиндрической колонны, высота которой составляет примерно 2 м. Электроны в воздухе не могут проходить больших расстояний, и поэтому из колонны мікроскопа откачивают воздух, создавая высокий вакуум, а образец помещают в микроскоп через воздушный шлюз. Поскольку ткани подвергаются воздействию вакуума, их необходимо высушить, и наблюдение живых объектов невозможно. Но при высушивании структура влажных тканей может нарушаться, и во избежание этого ткани фиксируют последовательно глутаральдегидом, который ковалентно связывает соседние белковые молекулы, и тетраоксидом осмия, который связывает и стабилизирует липиды клеточных мембран и тканевые белки. Электроны обладают очень ограниченной проникающей способностью, и поэтому ткани следует нарезать на срезы толщиной 50 - 100 нм.

Рассеяние электронов пропорционально квадрату атомного номера рассеивающего атома. Поэтому, например, рассеивающая способность урана в 104 раз больше, чем рассеивающая способность водорода. Биологические образцы и пленки-подложки состоят в основном из легких атомов, и контраст для выявления структурных особенностей образца оказывается недостаточным. По этой причине приходится применять позитивное или негативное контрастирование. Позитивное контрастирование заключается в введении тяжелых атомов в образец. Это можно сделать химическим путем (например, путем связывания ионов уранила с ДНК или фиксацией осмием липидов мембран) или методом оттенения, т.е. напыления тяжелых металлов на образец, при котором образуются области с высоким и низким содержанием тяжелого металла, отражающие структурные особенности образца. При негативном контрастировании образец помещается в раствор, содержащий тяжелые атомы, например, в раствор уранилацетата, и рассеивающие тяжелые атомы заполняют все пространство вокруг нерассеивающих клеточных структур. Контрастирование образцов, позволяя выявлять отдельные детали их строения, одновременно снижает разрешающую способность микроскопа до 2 нм.

Существует несколько типов взаимодействия электронов с образцом:
1) отсутствие взаимодействия, т.е. прохождение через межатомные пространства,
2) упругое рассеяние (без потери энергии) орбитальными электронами атомов образца и
3) неупругое рассеяние (с потерей энергии) ядрами атомов. Соотношение последних двух видов взаимодействия является характеристическим для каждого элемента, причем для более тяжелых элементов увеличивается доля неупругого рассеяния. Исходя из этого, был разработан новый специальный тип микроскопов. В то время как в обычном электронном микроскопе падающий пучок электронов покрывает весь образец, в электрон-спектроскопических микроскопах пучок сжимается до очень малого (0.5 нм диаметром) пятна. Это пятно бістро обегает образец, подобно тому, как это делает луч на экране телевизора. При движении пучка в каждой точке измеряется соотношение электронов с разной энергией и полученное соотношение обрабатывается компьютером и преобразуется в изображение на мониторе. В результате становятся возможными идентификация атомов индивидуальных химических элементов и наблюдение их распределения в образце.

Сканирующий электронный микроскоп обратного рассеяния позволяет получать трехмерные изображения клеточных поверхностей. Здесь электронный луч, сжатый в маленькое (10 нм диаметром) пятно, не проходит через образец, а обегает поверхность образца, покрытого толстым (20 нм) слоем золота или другого тяжелого металла. Когда пучок падает на металл и проходит в нем короткое расстояние, золото начинает испускать электроны вследствие вторичной эмиссии или сами электроны пучка за счет обратного рассеяния. Количество рассеиваемых электронов зависит от угла наклона луча к поверхности образца, и в зависимости от кривизны этой поверхности результирующее изображение будет состоять из ярких точек и глубоких теней, что и создает иллюзию трехмерности. Разрешение такого микроскопа ограничено 10 нм, поэтому он используется в основном для исследования объектов, размеры которых лежат в диапазоне между раз мерами интактных одиночных клеток и небольших организмов.


Загрузка...
Яндекс.Метрика Google+