Человеческий глаз в состоянии различить два объекта, если угловое расстояние между ними составляет не менее 3710-4 рад. Разрешение глаза определяется дифракцией на зрачке, аберрациями хрусталика (явление, когда не все лучи, выходящие из данной точки объекта, фокусируются в одной точке) и угловым расстоянием между колбочками сетчатки (1.5710-4 рад). Если объекты находятся на расстоянии 25 см от глаза (самое меньшее расстояние, на котором без особых усилий еще можно видеть четко предмет), то разрешение возможно лишь в том случае, если расстояние между ними составляет не менее 0.07 мм. Для разрешения более мелких деталей необходимо, чтобы угол, на котором их изображение проецируется на сетчатку, был больше 3710-4 рад.

Такого эффекта можно добиться с помощью микроскопа. Однако и в этом случае разрешающая способность микроскопа ограничена дифракцией света в его оптической системе. При этом разрешающая способность микроскопа пропорциональна длине волны света, и ее максимальное теоретическое значение составляет 200 нм, поскольку ультрафиолетовое излучение является самым коротковолновым, которое может быть ис- пользовано в световом микроскопе. При попытках увеличить разрешающую способность путем использования излучения с более короткой длиной волны возникают следующие трудности: во-первых, в области длин волн < 200 нм вода и воздух интенсивно поглощают; во-вторых, реально существующие источники еще более коротковолнового излучения ис- пускают рентгеновские лучи с длиной волны примерно 0.1 нм или g-лучи с длиной волны во много раз короче, чем 0.1 нм. Поскольку не существует линз, способных сфокусировать рентгеновские или g-лучи, то и нельзя построить микроскопа, работающего на этих видах излучения.

Большинство компонентов клеток прозрачны для световых лучей, поэтому для того, чтобы сделать их видимыми, используют органические красители, избирательно связывающиеся с различными клеточными структурами. Для выявления специфических макромолекул получают антитела к ним. Осуществив ковалентное связывание этих антител с ферментом или флюоресцирующим красителем, можно определить внутриклеточное распределение исследуемых макромолекул. Окрашенные участки клетки изменяют интенсивность (уменьшают амплитуду) проходящих через образец световых волн определенной длины и в результате формируется окрашенное изображение, доступное для прямого наблюдения. Другой способ сделать видимыми детали строения клетки основан на явлении изменения фазы световой волны при прохождении света через биологические ткани. В фазово-контрастном и интерференционном микроскопах различие фаз света, проходящего через участки клетки, различающиеся толщиной или плотностью, преобразуется в различие интенсивностей света. С помощью фазово-контрастной и интерференционной микроскопии можно наблюдать живые клетки, тогда как большинство биологических образцов перед окраской фиксируют для стабилизации их структуры.

Иногда, например, когда структуру нельзя окрасить или когда ее концентрация и показатель преломления света настолько малы, что не могут привести к достаточно большой разнице фаз, для того чтобы частицы можно было увидеть в фазово-контрастный или интерференционный микроскоп, единственным свойством, делающим структуру видимой, является двойное лучепреломление, т. е. разница показателей преломления света в двух взаимно перпендикулярных направлениях. Двойным лучепреломлением обычно обладают образцы, содержащие однотипные одинаково ориентированные структуры, например, микротрубочки веретена деления или стопки тилакоидных мембран в хлоропластах, и его наблюдают с помощью поляризационного микроскопа. Во многих случаях поляризационная микроскопия дает детальную информацию об ориентации молекул.

Тот же принцип, что и в обычном просвечивающем световом микроскопе, используется в работе ультразвукового микроскопа - различные биологические ткани поразному поглощают ультразвук и контрастирование основано на различиях в поглощении ультразвука разными частями объекта. Источником ультразвукового излучения является пьезоэлектрический кристалл, а детектируются проходящие волны с помощью пластмассового зеркала, в которое они ударяются после прохож- дения через образец и деформацию которого можно наблюдать оптическими методами с высоким пространственным разрешением. В наиболее типичных биологических тканях длина звуковой волны при частоте 2 ГГц равна примерно 750 нм, что сопоставимо с длиной волны электромагнитного излучения в оптическом диапазоне. Во многих случаях применение ультразвукового микроскопа оказывается предпочтительнее, чем использование оптической микроскопии, поскольку он не требует, чтобы объект исследования был окрашен.


Загрузка...
Яндекс.Метрика Google+