Макромолекулы поглощают свет. Длины волн, при которых происходит поглощение, и степень поглощения зависят от структуры и от окружения макромолекулы, потому спектроскопия поглощения, или абсорбционная спектроскопия, может служить полезным инструментом для характеристики макромолекул. Энергия света равна E = hc/l, где h - постоянная Планка , c - скорость света, l - длина волны света. Когда свет встречается с молекулой, он может либо рассеиваться (т.е. изменять направление своего распространения), либо поглощаться (т.е. его энергия передается молекуле). Если произошло поглощение электромагнитной энергии света, о молекуле говорят, что она перешла в возбужденное состояние. Возбужденная молекула обладает набором дискретних квантованных энергетических состояний, называемых энергетическими уровнями молекулы. Поглощение энергии происходит с наибольшей вероятностью только в том случае, если количество поглощенной энергии соответствует разности энергий квантованных состояний: l = hc/(E1-E2), где E1 - энергетический уровень молекулы до поглощения, а E2 - энергетический уровень, достигаемый в результате поглощения. Изменения энергетического состояния при испускании или поглощении кванта называется переходом.

Зависимость вероятности поглощения от длины волны называется спектром поглощения. Вероятность перехода при данной длине волны характеризуется коэффициентом погашения (экстинкции) при этой длине волны (e). Если свет интенсивности Io проходит через раствор с толщиной слоя d и концентрацией c, интенсивность прошедшего света I подчиняется закону Бугера-Ламберта-Бера: lg (Io/I) = edc. Величину lg (Io/I) называют оп- тической плотностью, ее удобно использовать, так как она лине йно зависит от c. В некоторых случаях, если c велико, e становится функцией c, и тогда линейность между оптической плотностью и концентрацией раствора нарушается. Это может быть результатом рассеяния света или структурных изменений (например, димеризации, агрегации или химических изменений) при высоких концентрациях.

Любая молекула поглощает свет в достаточно широкой области длин волн. Однако при данной длине волны в спектре обычно преобладает поглощение химических групп только одного типа. Эти группы называют ХРОМОФОРАМИ. Хромофоры, входящие в состав белков и нуклеиновых кислот, поглощают свет только при длинах волн, менших чем 300 нм. Использование воды в качестве растворителя автоматически ограничивает спектральные измерения областью длин волн, больших, чем 170 нм. Ниже этого предельного значения поглощение даже очень тонких (` 1 мкм) водных пленок так велико, что регистрация на его фоне какого бы то ни было вклада от макромолекул требует особой высокой точности. 2

Хромофорами белков являются пептидные группы O=С-N-H и боковые группы аминокислотных остатков. Кроме того, некоторые белки содержат дополнительные хромофоры: например, атомы меди или железа, железосерные кластеры, ретиналь в родопсине, флавины и т.п. Полоса поглощения пептидной группы наблюдается при 210-220 нм, но является слабой. Для боковых групп большинства амінокислот максимумы поглощения лежат в той же области, что и поглощение пептидной группы.

Зарегистрировать их поглощение в белках почти невозможно, поскольку по интенсивности оно сильно уступает пептидной группе и к тому же число соответствующих боковых групп обычно меньше, чем число пептидных групп. Исключение составляют аминокислоты Phe, Tyr и Trp, поглощение ароматических боковых групп которых имеет максимумы при длинах волн, превышающих 230 нм. Спектры поглощения этих трех ароматических аминокислот при нейтральных pН представлены на рис. 29. Поглощение Trp значительно сильнее, чем Phe и Tyr, однако он редко присутствует в белках в больших количествах в отличие от Tyr, вклад которого в поглощение белков также оказывается весьма значительным. Поглощение Phe гораздо меньше и обнаружить его присутствие в белках, содержащих другие ароматические аминокислоты, оптическими методами почти невозможно.

Хромофорами нуклеиновых кислот являются пуриновые и пиримидиновые основания (рис. 30). Электронная структура пуринов и пиримидинов гораздо сложнее, чем белковых хромофорных групп. Поэтому кажущиеся простыми полосы поглощения полинуклеотидов в действительности являются результатами наложения нескольких разных полос. Полосы поглощения отдельных хромофоров типичной нуклеиновой кислоты сливаются и дают простую на вид полосу с максимумом при 258 нм (рис. 31).


Загрузка...
Яндекс.Метрика Google+