Синтез АТФЧеловек и животные получают энергию за счет окисления органических соединений, поступающих с пищей. Биологическое окисление веществ – это, по сути, медленное горение. Конечные продукты сгорания дров (целлюлозы) – углекислый газ и вода. Полное окисление органических веществ (углеводов и липидов) в клетках также происходит до воды и углекислого газа. В отличие от горения, процесс биологического окисления происходит постепенно. 

Высвобождающаяся энергия также по- степенно запасается в виде химических связей синтезируемых соединений. Некоторая ее часть рассеивается в клетках, поддерживая необходимую для жизнедеятельности температуру. Синтез АТФ происходит главным образом в митохондриях (у растений еще и в хлоропластах) и обеспечивается в основном энергией, выделяющейся при расщеплении глюкозы, могут использоваться и другие простые органические соединения – сахара, жирные кислоты и пр.

Гликолиз. Процесс расщепления глюкозы в живых организмах носит название гликолиза (<греч. glykys сладкий + lysis пасщепление). Рассмотрим основные его этапы. На первой, предварительной стадии в лизосомах происходит образование простых органических молекул путем расщепления ди- и полисахаридов. Выделяющееся при этом небольшое количество энергии рассеивается в виде тепла. Второй этап гликолиза происходит в цитоплазме без участия кислорода и называется анаэробным (бескислородным – <греч. ana без + аег воздух) гликолизом – неполным окислением глюкозы без участия кислорода.

Бескислородный гликолиз представляет собой сложный многоступенчатый процесс из десяти последовательных реакций. Каждая реакция катализируется специальным ферментом. В итоге глюкоза расщепляется до пировиноградной кислоты (ПВК):
С6Н12О6(глюкоза) + 2Н3РО4 + 2АДФ 2С3Н4О3(ПВК) + 2АТФ + 2Н2О.
Глюкоза в этом процессе не только расщепляется, но и окисляется (теряет атомы водорода). В мышцах человека и животных две молекулы ПВК, приобретая атомы водорода, восстанавливаются в молочную кислоту С3Н6О3. Этим же продуктом заканчивается гликолиз у молочнокислых бактерий и грибков, применяемый для приготовления кислого молока, простокваши, кефира, а также при силосовании кормов в животноводстве. Процесс превращения ПВК в клетках микроорганизмов и растений в устойчивые конечные продукты называют брожением.

Так, дрожжевые грибки расщепляют ПВК на этиловый спирт и углекислый газ. Этот процесс, называемый спиртовым брожением, используют для приготовления кваса, пива и вина. Брожение других микроорганизмов завершается образованием ацетона, уксусной кислоты и т.д. Главным результатом анаэробного гликолиза во всех организмах является образование двух молекул АТФ. Высвобождающаяся при расщеплении глюкозы энергия относительно невелика – 200 кДж/моль. Высокоэнергетичные связи АТФ запасают 40% этой величины. Остальные 60% рассеиваются в виде тепла. Основной выход энергии и молекул АТФ происходит на третьем, кислородном этапе гликолиза, называемом еще аэробным дыханием.

Кислородный гликолиз. При наличии достаточного количества кислорода дальнейший процесс расщепления ПВК происходит уже не в цитоплазме, а в митохондриях, и включает несколько десятков последовательных реакций, каждая из которых обслуживается своим комплексом ферментов. Молекулы ПВК под действием ферментов (и кофермента НАД – никотинамидадениндинуклеотида) поэтапно окисляются сначала до уксусной кислоты, а затем, в так называемом цикле Кребса (или трикарбоновых кислот), до углекислого газа и воды (медленное горение). В процессе окисления образуются сложные молекулярные соединения с присоединенными к ним атомами водорода.

Молекулы-переносчики подхватывают и перемещают электроны этих атомов по длинной цепи ферментов от одного к другому. На каждом шаге электроны вступают в окислительно-восстановительные реакции и отдают свою энергию, которая идет на перемещение протонов на внешнюю сторону внутренней мембраны митохондрии. В результате оставшиеся протоны и перемещенные электроны оказываются на разных сторонах внутренней мембраны. На мембране создается разность потенциалов.

Фермент, синтезирующий АТФ (АТФ-синтетаза), встроен во внутреннюю мембрану по всей ее толщине. Этот фермент имеет характерную особенность: небольшой каналец в молекулярной структуре. При накоплении на мембране разности потенциалов примерно в 200 мВ ионы Н+ начинают протискиваться через каналец в молекуле АТФ-синтетазы. В процессе энергичного продвижения ионов через фермент происходит синтез АТФ из АДФ с участием фосфорной кислоты.

Гликолиз — расщепление глюкозы. В химических реакциях кислородного гликолиза освобождается большое количество энергии – 2600 кДж/моль. Существенная ее часть (55%) запасается в высокоэнергетичных связях образующихся молекул АТФ. Остальные 45% рассеиваются в виде тепла (поэтому при выполнении физической работы нам жарко). Итоговое уравнение кислородной стадии выглядит следующим образом:
2С3Н6О3(молочн.кислота) + 6О2 + 36H3PO4 + 36АДФ -> 6СО2 + 42Н2О + 42Н2О + 30АТФ.

Таким образом, кислородное расщепление резко увеличивает эффективность энергетического обмена и играет основную роль в аккумулировании энергии. Если гликолиз без участия кислорода дает только 2 молекулы АТФ, то кислородный гликолиз обеспечивает синтез 36 молекул АТФ. В итоге в полном цикле гликолиза на каждую молекулу глюкозы образуется 38 молекул АТФ. При среднесуточных энергетических затратах в 10 тыс. кДж в организме человека ежедневно синтезируется около 170 кг АТФ, а содержится всего около 50 г АТФ, следовательно, возобновление запаса происходит с частотой 3400 раз в сутки!

При интенсивной физической работе клетки организма не успевают насытиться кислородом, и расщепление глюкозы ограничивается бескислородным гликолизом. В результате быстро накапливается молочная кислота – токсичное для нервных и мышечных клеток соединение (вспомним мышечные боли после тяжелой работы). Появление молочной кислоты возбуждает дыхательный центр и заставляет нас усиленно дышать. Насыщение клеток кислородом позволяет организму возобновить процесс кислородного расщепления, обеспечивающий необходимое количество энергии в виде молекул АТФ.

Наступает «второе дыхание». Гепардам после интенсивного бега требуется продолжительный отдых, порой они оказываются не в состоянии защитить свою добычу от менее сильных хищников. В большой скорости восстановления кислородного запаса, а значит, в лучшей приспособленности к длительной мышечной активности – преимущество многих мелких животных.

Митохондрии способны использовать для синтеза АТФ не только расщепление глюкозы. В их матриксе содержатся также ферменты, расщепляющие жирные кислоты. Особенностью этого цикла является большой энергетический выход – 51 молекула АТФ на каждую молекулу жирной кислоты. Не случайно медведи и другие животные, впадая в спячку, запасают именно жиры. Любопытно, что часть запасаемого жира имеет у них бурый цвет. Такие жировые клетки содержат множество митохондрий необычного строения: их внутренние мембраны пронизаны порами. Ионы водорода свободно проходят через эти поры, и синтез АТФ в клетках бурого жира не происходит. Вся энергия, освобождающаяся в процессе кислородного расщепления жирных кислот, выделяется в виде большого количества тепла, согревающего животных во время долгой зимней спячки. Бурый жир составляет не более 1-2% массы тела, но повышает производство тепла до 400 Вт на каждый килограмм веса (теплопроизводство человека в состоянии покоя составляет 1 Вт/кг). Запасают жир и верблюды. При постоянном дефиците влаги это вдвойне выгодно, поскольку расщепление жиров дает еще и большое количество воды.

Кроме глюкозы и жирных кислот, митохондрии способны расщеплять аминокислоты, но они – дорогое топливо. Аминокислоты являются важным строительным материалом, из них организм синтезирует свои белки. К тому же использование аминокислот для синтеза АТФ требует предварительного удаления аминогруппы NH2 с образованием токсичного аммиака. Белки и составляющие их аминокислоты используются клеткой для получения энергии только в крайнем случае.
Этиловый спирт тоже может использоваться митохондриями для синтеза АТФ. Но спирт как «топливо» имеет для организма человека свои недостатки, постоянное употребление алкоголя приводит к тяжелым расстройствам, например, к жировому перерождению печени – циррозу.


Загрузка...
Яндекс.Метрика Google+